In cooperation with:

AZL Joint Partner Project: Cost and CO₂ saving Lightweight Tailgate Concept Study

Cost and CO₂ saving Lightweight Tailgate Concept Study Introduction and Aim of the Project

New lightweight designs and production concepts for automotive tailgates to reduce CO₂ emissions and costs are developed

Sustainability in combination with cost efficiency are increasingly important arguments for lightweight design in the automotive industry. Economic factors such as fuel and raw material consumption are the focus of new developments for ICEVs alongside performance. For BEVs the driving range is a key performance indicator for OEMs.

CO₂, cost and weight saving potentials for different materials and production technologies are identified

The experts at the AZL deal intensively with the issues of sustainability and cost reduction through lightweight design. The AZL engineering team combines know-how about different materials, design, technologies and processes to develop new component concepts. Together with the partners of Conbility GmbH, we analyze production process chains with regard to costs and eco KPIs. The required background information comes from our databases and is identified and discussed through expert meetings in our industrial and campus network.

Aim of this Project

- Identification of material, design and technology solutions to reduce CO₂ emissions
- Development of concepts for CO₂, cost and weight reduction by use of composites
- Derivation of manufacturable designs and production concepts
- Benchmark of concepts regarding CO₂ emission, cost and weight

Cost and CO₂ saving Lightweight Tailgate Concept Study

State of the Art & Questions to be answered

Peugeot 308

Sabic thermoplastic LFT structure

Citroën C4 Picasso

IDI SMC Concept study

VW ID.3 Liftgate

Magna thermoplastic concept

VW Golf VIII

There is a large number of different concepts and series components that use fiber reinforced thermoplastic or thermoset materials for the structural frame, locally reinforced with metals or other composite materials (e.g. continuous fibers).

Plastic Omnium Higate concepts

Fraunhofer WKI natural fiber concept (flax)

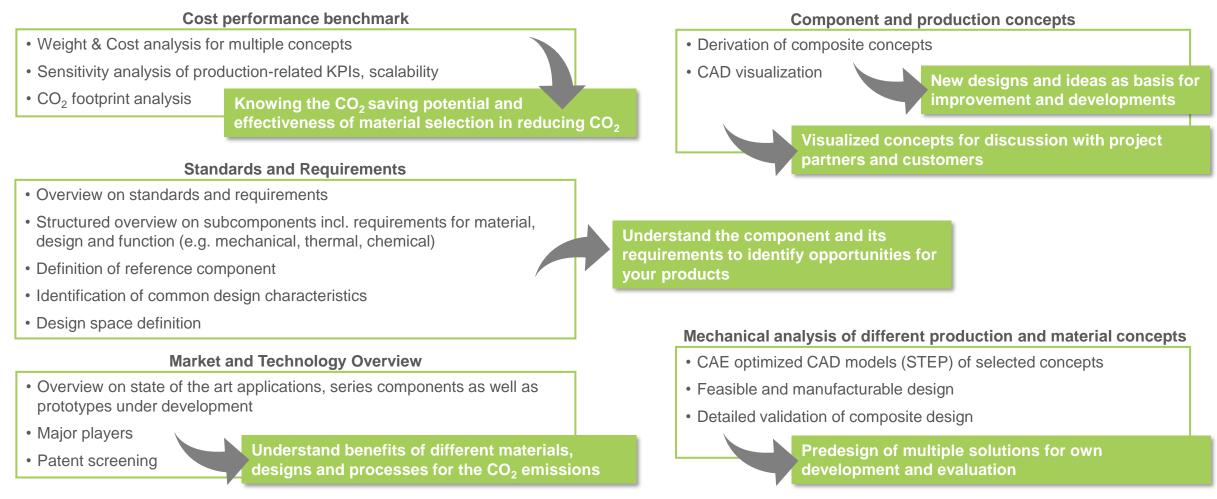
- What approaches exist to cost-effectively achieve the CO₂ reductions mandated in the future?
- Which potential for CO₂ emission reduction exists?
- Which lightweight solutions contribute to higher efficiency and to reaching eco-targets in future mobility?
- How does a smart part design enable CO₂ footprint reduction and sustainability?
- What are possible new technologies or how can actual technologies evolve?
 - How can a lower CO₂ emission be achieved with lower costs of the tailgate?

Cost and CO₂ saving Lightweight Tailgate Concept Study Objectives

General understanding of market, trends and challenges for different tailgate solutions

- Identification of different classes and exemplary concepts
- The future of automotive lightweight design and the role of the tailgate in reducing the CO₂ emissions

Scope of investigations

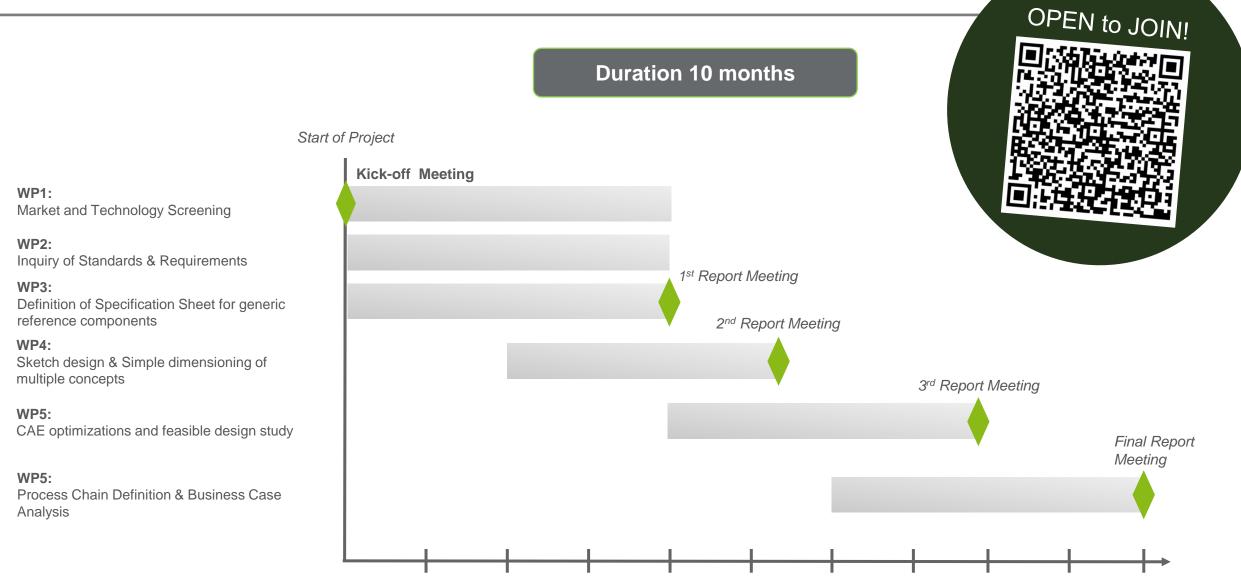

- Currently employed concepts and their CO₂ emissions and design driving load cases
- High volume segments for the tailgate market
- Production processes and materials used
- Comparison of alternative concepts and designs to a reference in terms of CO₂ emission, weight, costs and same functional specification

Results:

- Neutral AZL evaluation of CO₂ reducing potential for different tailgate concepts
- Specific advantages of different materials and structural layouts
- Cost, CO₂ footprint and weight comparisons of different material and structural layout solutions
- Opportunities to lower CO₂ footprint by material selection and design

Cost and CO₂ saving Lightweight Tailgate Concept Study Your Benefits

This study provides a comprehensive overview and evaluation of CO_2 -efficient lightweight tailgate concepts. The results and intermediate results will be presented and discussed in the report meetings to cross-check with experienced branch insiders. The project provides identification and evaluation of innovative approaches. Different building blocks offer benefits on your roadmap for realizing innovative ideas:


Cost and CO₂ saving Lightweight Tailgate Concept Study

Project Procedure & Scope of Work

	Norm Type of norm ISO 12405 ISO ISO 12405 ISO ISO 6469 ISO IEC 62660 IEC IEC 62060 IEC IEC 62281 IEC UN ECE R1002 UN ECE UN ECE R136 UN ECE UN ECE R136 UN ECE UN SAE J2464 SAE SAE J2280 SAE SAE J2380 SAE SAE J2380 UL UL 2580 UL UL 2271 UL GB/T 36276 GB/T GB/T 34570 GB/T	h b Hull surface		Strength & Stiffness	Percenter Based
WP1 Market and Technology Screening	WP2 Inquiry of Standards & Requirements	WP3 Definition of Specification Sheet for generic reference components	WP4 Sketch design & Simple dimensioning of multiple concepts	WP5 CAE optimizations and feasible design study	WP6 Process Chain Definition & Business Case Analysis
 Results: Overview on established concepts incl. similarities and differences Concepts and prototypes under development Patent screening 	 Results: Overview on main standards and requirements Functions to be integrated Potential benefits that could be achieved by different material approaches for reducing CO₂ emissions 	 Results: Structured overview on subcomponents incl. requirements for material, design and function (e.g. mechanical, thermal, chemical) Definition of reference CO₂ footprints Identification of common design characteristics Design space definition 	 Results: Overview of potential materials and production technologies and their CO₂ emissions (e.g. metal, plastic and composites based on glass, carbon or natural fibers) Derivation of composite concepts Simplified design & CAD models for multiple selected concepts, allowing dimensioning. 	 Results: CAE optimized CAD models of selected concepts CAD visualization Feasible and manufacturable design Detailed validation of composite design 	 Results Weight & Cost analysis for multiple concepts Sensitivity analysis of production-related KPIs, scalability Benchmarking against cell-to- module-to-pack reference.

Cost and CO₂ saving Lightweight Tailgate Concept Study

Estimated Time-Planning & Costs

Your Contacts

Lightweight Center and One-stop Shop for Business and Technology Development

Dr.-Ing. Michael Emonts Managing Partner michael.emonts@azl-aachen-gmbh.de Phone: +49 241 8024 500 Mobile: +49 172 720 7681

Dr.-Ing. Kai Fischer Managing Partner kai.fischer@azl-aachen-gmbh.de Phone: +49 241 8027 105 Mobile: +49 176 728 23 544 Philipp Fröhlig, B.Eng. Project Initiation and Management philipp.froehlig@azl-aachen-gmbh.de Phone: +49 241 475 735 14 Mobile: +49 176 80488799 Fabian Becker, M.Sc. Senior Design Engineer Fabian.becker@azl-aachen-gmbh.de Phone: +49 241 475 735 22 Mobile: +49 177 280 399 6

In cooperation with:

Aachen GmbH

Excellence in Lightweight Production

