

AZL Joint Partner Cost Sharing Project:

Concept Study & Development of Cell-to-Pack Battery Casings

Background Information

Background Information

Previous AZL study on Battery pack designs

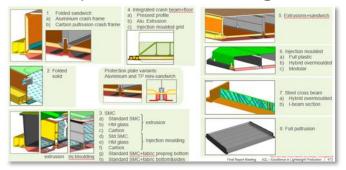
Summary points previous AZL consortium study:

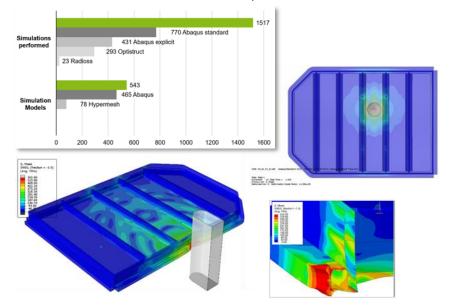
- 44 reference designs and concepts analysed. Today mostly metal, fastest solution for OEM, but also relatively heavy.
- 20 different multi-material pack structure designs made by AZL. Yielded 5 patents. Fully CAE analysed and optimised to all relevant load cases.
- Many composite dominant design concepts are up to 20% cheaper and up to 36% lighter than the reference aluminium design.

46 partners in the consortium

44 Reference parts and concepts analysed

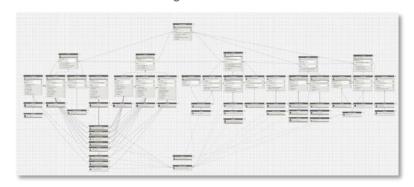
Overview and analysis of all relevant international standards and requirements



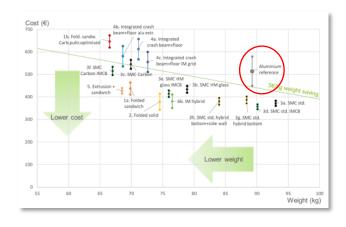

Background Information

Previous AZL study on Battery pack designs

Development of 20 Design concepts


1516 CAE simulations, 543 FEM models

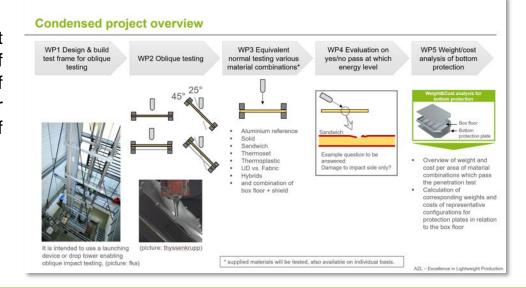
Production layout and cost analysis



- · Detailed material, process and assembly analysis by AZL
- · Verified with multiple sources
- · Process chain modelling and cost calculations

→ Result

- High potential for cost saving and weight saving by various multi-material solutions incorporating composites in comparison with Aluminium solutions
- Comparison of weight and costs at equal performance and safety level


Background Information: Follow-up projects running now

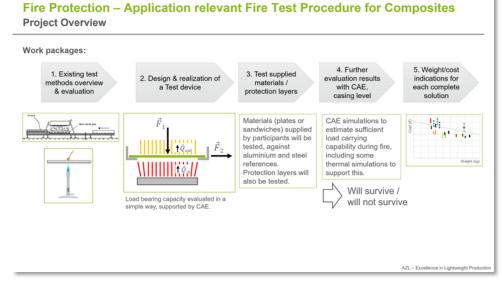
Bottom Impact Protection and Fire Protection

Impact Protection

Application relevant test method and investigation of relative safety performance of different material options for bottom impact protection of battery casings

- Setup of test procedure and test bench
- Test of 20 samples
- Impact on performance, weight and costs

13 partners in the consortium



Fire Protection

Application relevant Fire Test **Procedure for Composites**

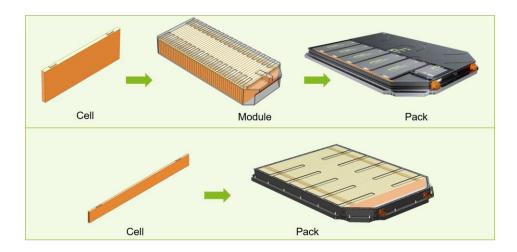
- Setup of test procedure and test bench
- Test of 50 samples
- Impact on performance, weight and costs

24 partners in the consortium

Content of the Project

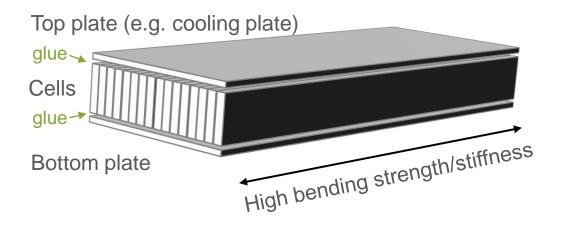
New Project Consortium | 33 Participating Companies

"Cell-to-Pack Battery Casings" - Concept & Development Study



What & Why for Cell-to-Pack

Currently the use of battery modules in a casing structure is the most common form of a battery pack. See below example of an AZL developed multi-material battery box structure. accommodating 11 battery modules.


Cell-to-Pack is seen by many as a future development:

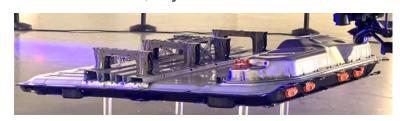
Skip the module, and directly mount cells into the battery box structure

Previous AZL research on battery packs showed:

- Trend to higher range promotes higher volumetric energy density. → Cell-to-Pack
- Module deletion yields cost saving, less components
- Slightly reduced battery pack height
- Interviews with OEMs confirm the wish to change to cell to pack design in future
- One step further: structural cell-to-pack (with blade cells):

Cell-to-Pack examples

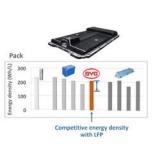
BYD blade cells, LFP type


BYD Han battery pack

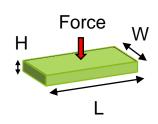
CATL Cell to pack concept, prismatic cells, both LFP and NCM

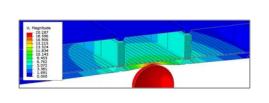
Telsa model Y, Cylindrical cells

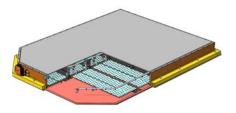
Although marketed as Cell-to-BIW, it could be regarded as Cell-to-Pack, with an integrated passenger compartment floor structure.


Cell-to-Pack state of the art:

Lots of developments going on, but little is published.


Challenges Cell-to-Pack:


- Sensitivity to bottom impact damage
- Repairability
- Fire protection in case of high energy density, needs suitable design concepts, supported by mechanical analysis


Project Procedure & Scope of Work

Norm	Type of norm
ISO 12405	ISO
ISO 6469	ISO
IEC 62660	IEC
IEC 60086	IEC
IEC 62281	IEC
UN ECE R100/2	UN ECE
UN ECE R136	UN ECE
UN 38.3	UN
SAE J2464	SAE
SAE J2929	SAE
SAE J2380	SAE
Sand 3123	Andere
UL 2580	UL
UL 2271	UL
GB/T 36276	GB/T
GB/T 34570	GB/T

WP1

Screening of Market and Technology **Developments**

Questions:

- Which are the major players?
- What is in development today?
- · Latest update on requirements
- Benefits and challenges with respect to pack requirements?

Result: Overview on developments, benefits and challenges for cell-topack.

WP2

Update on reference **Specification** Sheet

Results

- An existing AZL aluminium reference enclosure will be updated for the purpose of studying cell-to-pack.
- · Requirements will be updated where relevant.

WP3

Listing of concepts Sketch design & dimensioning of multiple alternative concepts

Results

- Overview of potential materials and production technologies (metal, plastic and composites)
- Simplified design & (CAE) analysis models for multiple selected concepts, allowing dimensioning against the relevant load cases.

WP4

CAD visualization

Results

 CAD models of selected concepts

Process Chain Definition & Business Case Analysis

Results

- Weight, Cost and CO₂ analysis (cradle to gate) for multiple concepts
- Analysis of other KPIs, e.g volume utilization
- Benchmarking against cell-to-module-to-pack reference.

Estimated Time-Planning

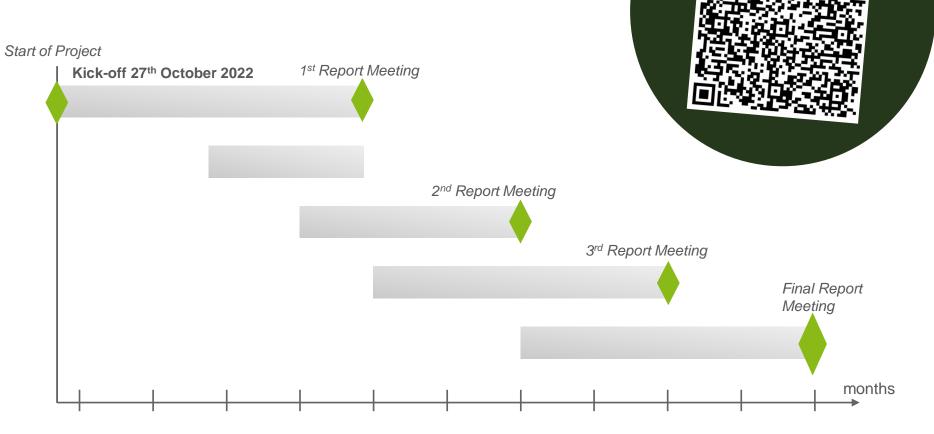
Duration 10 months

Screening of Market and Technology Developments

WP2:

Update on reference specification sheet

WP3:


Listing of concepts | Sketch design & dimensioning of multiple alternative concepts

WP4:

CAD visualization

WP5:

Process Chain Definition & Business Case Analysis

OPEN to JOIN!

Your Contacts

Lightweight Center and One-stop Shop for Business and Technology Development

Dr.-Ing. Michael Emonts

Managing Partner michael.emonts@azl-aachen-gmbh.de

Phone: +49 241 8024 500 Mobile: +49 172 720 7681

Dr.-Ing. Kai Fischer

Managing Partner kai.fischer@azl-aachen-gmbh.de Phone: +49 241 8027 105

Mobile: +49 176 728 23 544

AZL Aachen GmbH

Campus Boulevard 30 Building Part 3B, 4th Floor 52074 Aachen, Germany www.azl-lightweight-production.com

Philipp Fröhlig, B.Eng.

Senior Project Manager philipp.froehlig@azl-aachen-gmbh.de Phone: +49 241 475 735 14 Mobile: +49 176 80488799

In cooperation with:

