Project introduction iComposite 4.0

Project key figures

Key figures:
- **Duration:** 01.01.2016 – 31.12.2018
- **Project budget:** 5,147,000 Euro
- **Sponsored by:** BMBF
- **Managed by:** PTKA

Project content:
“Development of an integrative and self-regulation production system for the large-scale production of multi-material FRP Parts”

AZL at your service:
- Development of smart production systems (CPPS)
- Process chain development
- Process investigations
- Process costing and optimization
- Production machine design
- Bilateral and joint partner projects

Project partners:
- **Schuler**
- **Frimo**
- **Siemens**
- **Apodius**
- **Toho Tenax**
- **ID Systec**

Storing of production history on integrated RFID-Chip
- **Additive fibre spraying and quality assurance**
- **Additive fibre placement and quality assurance**
- **Controlled resin injection and quality assurance**
Project introduction iComposite 4.0
Raising productivity for large-scale production

Increasing need for lightweight design for various markets
➢ Composites are one key enabling technology

BUT:
■ Inefficient material usage (scrap up to 50%)
■ High reject rates (up to 20%)
■ Limited automation
■ No consecutive quality assurance
➢ Small and medium production volumes
➢ Increased productivity is required

Aim of iComposite 4.0: 50 % part cost reduction by automated preforming and product function oriented production
Project introduction iComposite 4.0
Setup of a self-regulating production system

AZL at your service:

- Development of smart production systems (CPPS)
- Process chain development
- Process investigations
- Process costing and optimization
- Production machine design
- Bilateral and joint partner projects

1. Multi-material design
 [Toho Tenax]
2. 3d fibre spraying
3. Comparison of mechanical properties
 [Apodius]
4. Autonomous adaption of continuous fibre design
 [Toho Tenax]
5. Manufacturing of individual continuous fibre patches
 [BA Composites]
6. Automated draping
 [AZL]
7. Adaptive RTM process
 [AZL]
8. Data tracking
9. Process & machinery integration

3d fibre spraying

Toho Tenax
Project introduction iComposite 4.0
Cost reduction by automated preforming

AZL at your service:
- Development of smart production systems (CPPS)
- Process chain development
- Process investigations
- Process costing and optimization
- Production machine design
- Bilateral and joint partner projects

3d-Fibre Spraying + Towpreg Placement + Resin Transfer Moulding

Cost reduction by:
+ Load optimized multi material design and cost efficient base materials
+ Automated preforming and no scrap production

However:
- Product fluctuations possible
- Production solely oriented on geometrical tolerances
Project introduction iComposite 4.0
Cost reduction by product function oriented production

AZL at your service:
- Development of smart production systems (CPPS)
- Process chain development
- Process investigations
- Process costing and optimization
- Production machine design
- Bilateral and joint partner projects

Material- and cost efficient part production

- Adaption of reinforcement to simulation
- Prediction of mechanical properties by structure simulation
- Inline quality control
- Reinforcement with individualised pattern for compensation of fluctuations
- Modell based process control
- Adaptive RTM: “zero scrap” due to adaption of process to individual preform

3d fibre spraying: Process fluctuations can result in scrap

≈ 2,000 mm

AZL at your service:
- Development of smart production systems (CPPS)
- Process chain development
- Process investigations
- Process costing and optimization
- Production machine design
- Bilateral and joint partner projects

Project introduction iComposite 4.0
The future of composite manufacturing at AZL
AZL at your service:
- Development of smart production systems (CPPS)
- Process chain development
- Process investigations
- Process costing and optimization
- Production machine design
- Bilateral and joint partner projects

Project introduction iComposite 4.0
Setup of production system at AZL started

RTM press and tooling

- textile demonstrator preform
- 3d fibre spraying and optical measurement system
Project introduction iComposite 4.0
Predicted cost savings by iComposite 4.0

Cost structure for lightweight production \[\text{VDMA12, YB14}\]

- 50% Invest
- 35% Operation
- 50% Material

Cost savings by increase of production: 30%
Reduction of labour costs by automation: 30 - 40%
Cost reduction by usage of cost efficient base materials: 35%
Cost reduction by multi-material design: 30 - 40%
Scrap reduction: 25 - 50%
Production rejects: 5 - 20%

Potential reduction of part costs: 49 - 64%

AZL at your service:
- Development of smart production systems (CPPS)
- Process chain development
- Process investigations
- Process costing and optimization
- Production machine design
- Bilateral and joint partner projects
Project introduction iComposite 4.0

Project partners and funding

Project partners:

“Project partners: [List of partners]

This research and development project is funded by the German Federal Ministry of Education and Research (BMBF) within the Framework Concept “Research for Tomorrow’s Production” (funding ref. no. 02P14A045) and managed by the Project Management Agency Karlsruhe (PTKA). The author is responsible for the contents of this publication.”

Sponsored/ managed by:

Supported by: